Search results for "Atrial ectopic"

showing 3 items of 3 documents

Combining Biophysical Modeling and Machine Learning to Predict Location of Atrial Ectopic Triggers

2018

The search for focal ectopic activity in the atria triggered from non-standard regions can be time consuming. The use of body surface potential maps to plan the intervention can be helpful, but require an advance processing of the data, that usually involves to solve an ill-posed inverse problem. In addition, changes in maps due to pathological substrate such as fibrosis might affect the expected electrical patterns. In this work, we use a machine learning approach to relate ectopic focus activity in different atrial regions with body surface potential maps, and consider the effects of fibrosis in various densities and distributions. Results show that as fibrosis increases over 15% the syst…

Computer sciencebusiness.industry0206 medical engineering02 engineering and technology030204 cardiovascular system & hematologyInverse problemmedicine.diseaseMachine learningcomputer.software_genre020601 biomedical engineering03 medical and health sciences0302 clinical medicineFibrosismedicineArtificial intelligenceFocus (optics)businesscomputerAtrial ectopic2018 Computing in Cardiology Conference (CinC)
researchProduct

Non-invasive localization of atrial ectopic beats by using simulated body surface P-wave integral maps

2017

Non-invasive localization of continuous atrial ectopic beats remains a cornerstone for the treatment of atrial arrhythmias. The lack of accurate tools to guide electrophysiologists leads to an increase in the recurrence rate of ablation procedures. Existing approaches are based on the analysis of the P-waves main characteristics and the forward body surface potential maps (BSPMs) or on the inverse estimation of the electric activity of the heart from those BSPMs. These methods have not provided an efficient and systematic tool to localize ectopic triggers. In this work, we propose the use of machine learning techniques to spatially cluster and classify ectopic atrial foci into clearly diffe…

TachycardiaPhysiologyComputer sciencemedicine.medical_treatment02 engineering and technology030204 cardiovascular system & hematologyBioinformaticsBiochemistryACTIVATIONElectrocardiography0302 clinical medicineHeart RateAtrial FibrillationMedicine and Health SciencesImage Processing Computer-AssistedDEPOLARIZATIONBody surface P-wave integral mapsCardiac AtriaAtrial ectopic beatsMultidisciplinarymedicine.diagnostic_testORIGINApplied MathematicsSimulation and ModelingP waveBody Surface Potential MappingQRHeartHUMANSaarhythmiasAblationANATOMYBioassays and Physiological Analysismachine learningPhysical SciencesAtrial ectopic beatsMedicineAtrial Premature ComplexesFIBRILLATIONmedicine.symptomTACHYCARDIAAlgorithmsResearch ArticleclusteringTachycardia Ectopic AtrialComputer and Information SciencesSVMScienceCORONARY-SINUS0206 medical engineeringCardiologyResearch and Analysis MethodsMembrane PotentialTECNOLOGIA ELECTRONICAMachine Learning Algorithms03 medical and health sciencesArtificial IntelligenceHeart Conduction SystemSupport Vector MachinesBody surfacemedicineComputer SimulationHeart AtriaCoronary sinusFibrillationbusiness.industryElectrophysiological TechniquesBiology and Life SciencesPattern recognitionAtrial arrhythmiasELECTROPHYSIOLOGY020601 biomedical engineeringMODELElectrophysiologyCardiovascular AnatomyCardiac ElectrophysiologyArtificial intelligencebusinessElectrocardiographyBiomarkersMathematics
researchProduct

Electrocardiographic Imaging Using a Spatio-Temporal Basis of Body Surface Potentials—Application to Atrial Ectopic Activity

2018

Electrocardiographic imaging (ECGI) strongly relies on a priori assumptions and additional information to overcome ill-posedness. The major challenge of obtaining good reconstructions consists in finding ways to add information that effectively restricts the solution space without violating properties of the sought solution. In this work, we attempt to address this problem by constructing a spatio-temporal basis of body surface potentials (BSP) from simulations of many focal excitations. Measured BSPs are projected onto this basis and reconstructions are expressed as linear combinations of corresponding transmembrane voltage (TMV) basis vectors. The novel method was applied to simulations o…

lcsh:QP1-981ECGbody surface potentialsinverse problematrial ectopic beatsbasis vectorsspatio-temporal regularizationlcsh:PhysiologyFrontiers in Physiology
researchProduct